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A two-pool model to describe
the IVIM cerebral perfusion
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Abstract

IntraVoxel Incoherent Motion (IVIM) is a magnetic resonance imaging (MRI) technique capable of measuring

perfusion-related parameters. In this manuscript, we show that the mono-exponential model commonly used to process

IVIM data might be challenged, especially at short diffusion times. Eleven rat datasets were acquired at 7T using a

diffusion-weighted pulsed gradient spin echo sequence with b-values ranging from 7 to 2500 s/mm2 at three diffusion

times. The IVIM signals, obtained by removing the diffusion component from the raw MR signal, were fitted to the

standard mono-exponential model, a bi-exponential model and the Kennan model. The Akaike information criterion

used to find the best model to fit the data demonstrates that, at short diffusion times, the bi-exponential IVIM model is

most appropriate. The results obtained by comparing the experimental data to a dictionary of numerical simulations of

the IVIM signal in microvascular networks support the hypothesis that such a bi-exponential behavior can be explained by

considering the contribution of two vascular pools: capillaries and somewhat larger vessels.
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Introduction

Perfusion imaging has been shown useful in a wide var-
iety of clinical applications, including the classification
of tumors,1 the identification of stroke regions2 and the
characterization of numerous other diseases.3,4 MRI
provides access to perfusion related parameters, either
using external tracers (contrast agents) or completely
noninvasively. Contrast agents are contraindicated in
patients at risk for nephrogenic systemic fibrosis, and
gadolinium deposits have been detected in the brain of
patients who underwent multiple contrast-enhanced
MRI scans.5,6 The Arterial Spin Labeling (ASL) tech-
nique, which uses blood as an endogenous tracer, has
been used as an alternative, noninvasive approach for
measuring cerebral perfusion in clinical settings.7

However, ASL suffers from low signal-to-noise ratio
and a dependence on transit time presenting limitations
in slow flow conditions, such as stroke. Besides, ASL
leads to high specific absorption rates (SAR) restricting
its repeated use for fragile subjects (children). Another
noninvasive approach which is becoming popular in
research and clinical applications is IntraVoxel
Incoherent Motion (IVIM) imaging.8,9 IVIM imaging

is a variant of diffusion MRI relying on the assumption
that flow of blood within capillary networks can be
considered as a pseudo diffusion process characterized
by a pseudo diffusion coefficient D*.10 Besides D*,
IVIM imaging also provides estimates of the flowing
blood volume fraction, fIVIM. Relationships linking
the IVIM outputs to classical perfusion parameters
have been proposed.11

The original IVIM model10 describes the signal
attenuation with the diffusion weighting as a mono-
exponential decay, assuming blood changes flowing
direction several times during the measurement

1NeuroSpin, CEA Saclay-Center, Gif-sur-Yvette, France
2INRIA Saclay, Palaiseau, France
3Bioengineering Department, Beckman Institute of Advanced Science and

Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Corresponding author:

Luisa Ciobanu, NeuroSpin, I2BM, Bâtiment 145, CEA Saclay-Center,

91191 Gif-sur-Yvette, France.

Email: luisa.ciobanu@cea.fr

Denis Le Bihan, NeuroSpin, I2BM, Bâtiment 145, CEA Saclay-Center,

91191 Gif-sur-Yvette, France.

Email: denis.lebihan@gmail.com

Journal of Cerebral Blood Flow &

Metabolism

2017, Vol. 37(8) 2987–3000

! Author(s) 2016

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0271678X16681310

journals.sagepub.com/home/jcbfm

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0271678X16681310
journals.sagepub.com/home/jcbfm


(‘‘diffusion’’) time. At very short diffusion times, when
blood remains in a single straight but randomly ori-
ented capillary segment, the signal attenuation becomes
a sinc function.9,10 Kennan et al.12 have proposed a
model based on velocity autocorrelation functions to
cover intermediate situations between the two extreme
regimes, mono-exponential and sinc. Arguing that the
Gaussian phase approximation assumed by Kennan
et al. is invalid in some cases, Wetscherek et al.13 intro-
duced a model based on normalized phase distribu-
tions. These two models assume that only flow in
capillaries contributes to the IVIM signal. Noticing
some disagreement between experimental data and the
standard mono-exponential model, other authors have
suggested models which take into account not only
capillaries but all types of vessels.14,15

Overall, there is a general consensus that the current
mono-exponential IVIM model is appropriate to fit
experimental data at long diffusion times, but might
not be accurate at small time scales. Here, we introduce
a bi-exponential IVIM model (not to be confounded
with the bi-exponential model used to separate diffu-
sion and IVIM effects16), accounting for two different
vascular pools, as an alternative to the mono-exponen-
tial model. We demonstrate that this bi-exponential
model fits the experimental data better than the stand-
ard mono-exponential model, especially at short diffu-
sion times. By comparing the experimental data to
numerical simulations of the flow within a microvascu-
lar network, we show that the IVIM signal can be
indeed related to two distinct pools of vessels.

Materials and methods

Theory

Extraction of the IVIM component from the raw MR

signal. Using a pulsed gradient MRI sequence, the
attenuation of the MRI signal due to diffusion and
IVIM effects10,17 can be expressed as

S bð Þ ¼ S0diffFdiff bð Þ þ S0IVIMFIVIM bð Þ ð1Þ

with b ¼ �2
R TE
0 k tð Þ
�� ��2�dt where k tð Þ ¼

R t
0 G t0ð Þ � dt0. S0diff

and S0IVIM are the fractions of diffusion and IVIM com-
ponents, respectively, with S0diff ¼ S0 � 1� fIVIMð Þ and
S0IVIM ¼ S0 � fIVIM, where fIVIM is the blood volume
fraction and S0 is the overall signal when b¼ 0 (it
should be noted that tissue and blood contribute to S0

with different T2 and T1-weightings). Fdiff(b) and
FIVIM(b) are, respectively, the diffusion and IVIM sig-
nals as a function of diffusion weighting.

Given that the pseudo diffusion coefficient asso-
ciated with the IVIM effect, D*, is much higher than
the water molecular diffusion in tissues, at high

b-values, the MR signal originates solely from water
molecules diffusing in the extravascular compartment
(pure diffusion effect). At small b-values, both diffu-
sion17 and flowing blood effects (IVIM effect) are pre-
sent and one has to remove the tissue diffusion
component to isolate the blood compartment.
To increase robustness (as there are fewer parameters
to estimate for each step), this is typically done using a
two-step process,18,19 first removing the extravascular
component found by fitting the experimental data for
high b-values (above 400–600 s/mm2) with a diffusion
model and then fitting the residual signal at low b
values.16 In this work, we used the Kurtosis20,21

model (equation (2)) to fit the diffusion component:

Fdiff bð Þ ¼ e�bADC0þ bADC0ð Þ
2K
6 ð2Þ

where ADC0 is the apparent diffusion coefficient
obtained when b approaches 0, and K is the Kurtosis
parameter which characterizes the deviation from the
exponential decay.

Different IVIM models

Making the hypothesis that the microvascular network
can be modeled by a series of straight tubes randomly
oriented in space and distributed over 4p, the expres-
sion for FIVIM bð Þ depends on the mean vessel length, L,
the mean blood flow velocity, v, and the diffusion
encoding time defined as �þ d.22 Several models have
been proposed to describe this dependency.

1) Mono-exponential IVIM model

When blood spins change vessels many times during the
diffusion encoding time, their movements can be mod-
eled by a random walk. The expression for FIVIM bð Þ is
thus exponential

FIVIM bð Þ ¼ e�b DbþD
�
expð Þ ð3Þ

where Db is the diffusion coefficient of water in blood
and D�exp, so-called the ‘‘pseudo-diffusion coefficient’’,
can be approximated by D�exp ¼

Lv
6 (Le Bihan et al.10), L

and v being the mean vessel length and mean blood
flow velocity, respectively.

2) Sinc IVIM model10

When blood spins stay in the same vessel during the
diffusion encoding time, i.e. they do not change direc-
tion and the blood flow velocity is assumed to be con-
stant, the expression for FIVIM bð Þ becomes

FIVIM cð Þ ¼ e�bDbsinc cvð Þ ð4Þ
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with c ¼ �
R TE=2
0 �Gtdtþ

R TE
TE=2

Gtdt

� �
. A D�sinc can also

be defined in this regime by calculating the Taylor
expansion limited to the first orders of FIVIM cð Þ. D�sinc
obtained in this case is D�sinc ¼

v2c2

6b (Le Bihan23), where
c2

b has units of time (c
2

b ¼ � for a PGSE sequence with
�� �). It can be seen that D�sinc is independent of L, as
spins never get to probe the entire segment.

3) Intermediate regime (Kennan model12)

The Kennan model uses a velocity autocorrelation
function to describe the spins’ dynamics. This function
can be applied to a capillary network with a distribu-
tion of segments of different lengths. After integrating
the expression of the signal attenuation, taking into
consideration the strength of the applied diffusion
encoding gradients, the sequence timing parameters
and the assumed velocity autocorrelation function for
capillary blood, the model equation12 becomes

FIVIM bð Þ ¼ e
�b

�v2

3
T0�þDb

� �

with � ¼ 1�
2T2

0�þ T3
0m

�2 ��
�

3

� �

and m ¼ 2e
� �

T0 þ 2e
��

T0 � e
��þ�

T0 � e
����

T0 � 2

ð5Þ

The two parameters extracted from this model are
�v2, the mean squared blood flow velocity and T0,
the correlation time which corresponds to the average
time the spins stay in a given segment. This model con-
verges toward the mono-exponential and the sinc
regimes at long and short diffusion times, respectively,
and it is expected to also cover intermediate regimes.

4) Bi-exponential IVIM model

As we will present later, in some cases, the mono-
exponential model is not sufficient to describe the IVIM
signal. Here we introduce a bi-exponential IVIM model
to better describe the IVIM signal decay

FIVIM bð Þ ¼ e�bDb fslowe
�bD�

slow þ ffaste
�bD�

fast

� �
ð6Þ

The physical interpretation behind this model is that,
instead of reflecting only one vascular pool, i.e. the capil-
laries, the IVIM signal incorporates contributions
coming from two different vascular components: a slow
component, characterized by fslow and D�slow, and a faster
component, characterized by ffast and D�fast with
fslow þ ffast ¼ 1. Depending on the experimental par-
ameters and the vascular properties, one can also

consider models consisting of a combination of
two sinc functions or one exponential and one sinc func-
tion. However, as indicated in previous literature
reports,13,24 when considering a Gaussian distribution
of blood flow velocities, the IVIM signal plotted against
b-value decays smoothly even when spins do not change
direction multiple times (closer to the sinc regime), sug-
gesting that fitting with a decaying exponential is a rea-
sonable choice.

As mentioned earlier, other models considering more
than one vascular pool were previously suggested.
Henkelman et al. proposed a model which involves
two pools associated with the arterial and venous
trees.14 Our model also assumes two vascular pools
but, unlike Henkelman’s, these pools are not of arterial
and venous origins, and they are separated based on
their respective blood velocities and geometries.

Animal procedures

Dark Agouti male rats (NR¼ 11, 240–360 g, 3–21
months, Janvier, Saint Isle, France) were used in this
study. The animals were housed two per cage and they
had ad libitum access to food and water. All animal
experiments were conducted according to recommenda-
tions of the EU Directive 2010/63/EU for care and use
of laboratory animals. The protocol was approved by
the Comité d’EThique en Expérimentation Animale
Commissariat à l’Energie Atomique et aux énergies
alternatives Direction des Sciences du Vivant Ile de
France (CETEA CEA DSV IdF) under protocol ID
10_032. This manuscript is in compliance with the
ARRIVE guidelines (Animal Research: Reporting in
Vivo Experiments).

Throughout the experiments, the animals, anesthe-
tized with 1.5–2% isoflurane in a 1:2 O2:air mixture,
were monitored for respiration rate (30–50 breath per
min) and temperature, maintained at a constant
36.5� 0.5�C with a heated air circuit device (SA
Instruments, Inc, USA). To avoid motion-related arti-
facts, the head was immobilized using a bite bar and ear
pins connected to the nose cone.

MRI acquisitions

Data were collected using a horizontally oriented 7T
small animal MRI scanner (Biospec, Bruker BioSpin,
Etlingen, Germany) equipped with a 740 mT/m gradi-
ent coil system. A 3� 3 cm2 four-element phased-array
receiver coil and a 7.2 cm (inside diameter) volume
transmit coil (Bruker BioSpin, Etlingen, Germany)
were used. After scout scans, the magnetic field homo-
geneity was ensured through the FASTMAP method
(Paravision 5.1) followed by the MAPSHIM method
to shim specifically in the region of interest.
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Coronal DW-MRI images were acquired using a
standard pulsed-gradient spin-echo EPI sequence with
a GRAPPA reconstruction (acceleration factor 2) and
30 b-values (20 b-values ranging from 7 to 500 s/mm2

and 10 b-values ranging from 500 to 2500 s/mm2). The
acquisition parameters were set as follows: gradient dir-
ections [X¼ 1, Y¼ 1, Z¼ 1], [X¼ 0, Y¼ 1, Z¼ 0] and
[X¼ 0, Y¼ 0, Z¼ 1], diffusion gradient duration time
d¼ 3ms, diffusion gradient separation times �¼ 14,
24 and 34ms, in-plane resolution 250� 250 mm2,
matrix size 80� 80, field of view 20� 20mm2, slice
thickness 1.5mm, 1 segment, echo time TE¼ 45ms,
repetition time TR¼ 1 000ms, six averages, six repeti-
tions, two slices. Data with strong motion artifacts were
discarded and the acquisition repeated. For one rat,
only five repetitions could be included.

Because our model includes a somewhat fast
flow component, we checked for possible inflow effects
by using two different TRs, 1000 and 3000ms (gradient
direction [X¼ 0, Y¼ 1, Z¼ 0], �¼ 14ms) on four ani-
mals. When the TR is short compared to the T1 relax-
ation time, the longitudinal magnetization of tissue
spins does not fully recover from the slice radiofre-
quency excitation between two repetitions, while fresh
flowing spins entering the voxel are fully magnetized,
which slightly enhances their relative contribution to
the signal. This ‘‘inflow’’ effect depends on the fraction
of fresh spins entering the slice, hence the dependence
on blood velocity, and will lead to an overestimation of
ffast. By increasing the repetition time, tissue spins
recover their magnetization and the apparent increase
in the signal due to flowing spins vanishes, restoring the
correct value for ffast.

Data analysis

IVIM/diffusion MRI images were processed using in-
house software written in MATLAB (MathWorks,
Massachusetts, USA). First, assuming isotropic IVIM
and diffusion effects in the regions of interest (ROIs)
at the acquired resolution, the signals from the differ-
ent gradient diffusion directions were averaged.
Afterwards, ROIs were drawn manually on the cortical
gray matter and on the thalamus of the left hemisphere
and averaged over the two acquired slices. The ROIs
consisted of approximately 132� 37 and 125� 33 pixels
for each slice for the left cortex (LC), and 90� 18 and
88� 15 pixels for each slice for the left thalamus (LT),
respectively. IVIM parameters were obtained from
the signal attenuation, S bð Þ, in two steps. First, we
estimated the diffusion component, Fdiff bð Þ, for b>
500 s/mm2 using the diffusion Kurtosis model. The
maximum b-value used for this fit, 2500 s/mm2, is smal-
ler than the limiting value of blim¼ 3000 s/mm2 for
which the Kurtosis model was reported to be adequate.

The blim value was calculated using blim< 3/(ADC0* K)
and considering typical brain values for ADC0 and K
of roughly 1 mm2/ms and 1, respectively.20 Second, we
fitted the IVIM component, FIVIM bð Þ, obtained from
the residual signal, after the diffusion component has
been removed for data corresponding to b< 500 s/mm2

(equation (2)), with three different models, mono-
exponential, Kennan, and bi-exponential according to
equations (3), (5), and (6), respectively. The adequacy
of the chosen b threshold value was confirmed after
examination of many cases, as the residual signal
taken after removing diffusion effects was found not
to differ significantly from noise for b-values above
500 s/mm2.

Numerical simulations of the IVIM signal
in microvascular networks

IVIM MRI signals coming from microvascular net-
works were numerically simulated using MATLAB.
Considering an isochromat characterized by the
position vector ~x tð Þ in the vascular compartment and
solving the Bloch equations25 while neglecting relax-
ation effects and water diffusion in blood, the
expression of the complex transverse magnetization
M ~x,TE
� �

associated to this isochromat at t¼TE can
be written as

M ~x,TE
� �

¼ e�i ’ ~x,TEð Þ ¼ e
�i�
R TE

0
~x tð Þ� ~GðtÞdt

ð7Þ

where i is the imaginary unit, ’ ~x,TE
� �

the phase shift
accumulated by the isochromat at t¼TE, � the gyro-
magnetic ratio of protons and ~G the gradient encoding
vector. We specify that ~GðtÞ ¼ f tð ÞG~e, with G the gra-
dient amplitude and ~e the gradient direction. For a
PGSE sequence, f tð Þ is expressed as:

f tð Þ ¼

0 for 0 	 t 	 t1

1 for t1 	 t 	 t1 þ �

0 for t1 þ � 	 t 	 t2

�1
for t2 	 t 	 t2 þ �

to reflect the effect of the 180� pulseð Þ

	 


0 for t2 þ � 	 t 	 TE

8>>>>>>>><
>>>>>>>>:

where t1 and t2 correspond to the beginning of the
first and second gradient pulses, respectively and
� ¼ t2 � t1.

Considering one isochromat trajectory ~x tð Þ that
includes N segments, with lengths Lk, orientations ok

!,
k ¼ 1 � � �Nð Þ, and constant flow velocity v, we
define Tk ¼

Lk

v , the time to traverse the segment k,
such that tk ¼

Pk
m¼0 Tm is the cumulative time to get
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to the end of segment k. The accumulated phase becomes

’ TEð Þ ¼ �
XN
k¼1

Z tk

tk�1

vok
! t� tk�1ð Þ � ~G tð Þdt

�

þvok
!Tk �

Z TE

tk

~G tð Þdt

� ð8Þ

Here, we suppose that TE ¼ tN, t0 ¼ 0 and
x0
!
¼ 0, 0, 0ð Þ.
We modeled the blood flow in the microvascular

network as a pseudo-random walk along straight
line segments with the segment orientations following
a uniform distribution in the unit sphere in 3D. This
choice allowed us to perform an analytical integration
on the unit sphere and removed the need to sample the
segment orientations in the numerical simulations. In
essence, we integrated e�i ’ TEð Þ (where ’ TEð Þ is given in
equation (8)) analytically over all possible orientations
ok
! for each segment k, assuming that ok

! is uniformly
distributed in the unit sphere. The end result is that the
MRI signal associated to all the isochromats that see N
segments of lengths Lk, k ¼ 1 � � �Nð Þ, during TE under
the uniform orientation distribution assumption is (see
online supplementary Appendix 1 for details)

SIC ¼
YN
k¼1

sinc �vG

Z tk

tk�1

t� tk�1ð Þ f tð Þdtþ Tk

Z TE

tk

f tð Þdt

� �� �

ð9Þ

It can be demonstrated (see online supplementary
Appendix 2) that equation (9) is valid in both the expo-
nential and the sinc regimes.

In the numerical simulations, we allowed the seg-
ment lengths and the blood velocities of the isochromat
trajectories to follow Gaussian distributions. We varied
the choice of the mean value and the standard deviation
of the Gaussian distributions for both velocities and
segment lengths. For a given Gaussian distribution of
lengths, with the mean value Lmean and the standard
deviation �L, and a given Gaussian distribution of
velocities, with the mean value vmean and the standard
deviation �v, we took 1000 different trajectories. One
velocity v was associated with each trajectory which
consisted of N segments with lengths L1,L2, � � �LN.
The number of segments, N, was defined as the smallest
value for which L1 þ L2 � � � þ LN 
 v TE, with
Nmax¼ 50. All trajectories resulting in more than 50
segments were not taken into account. To compute
SIC for this sample, we plugged L1,L2, � � �LN and v
into equation (9). The averaged SIC over the 1000 sam-
ples was defined as the simulated signal FIVIM=Sim for
the distribution choice Lmean, �L, vmean, �vð Þ.

We computed FIVIM=Sim for 72 values of Lmean, span-
ning the interval 8–150mm, with a 2 mm step, and 100

values of vmean, spanning the interval 0.1–10mm/s, with
a 0.1mm/s step. To reduce the complexity of the prob-
lem of fitting experimental data to simulations, we used
only one value for the relative standard deviation,
namely 50%. In other words, the standard deviation
was fixed at �L ¼ 0:5� Lmean for each choice of
Lmean and fixed at �v ¼ 0:5� vmean for each value of
vmean. The simulated FIVIM=Sim for each combination
of Lmean and vmean was assembled to build a dictionary
of simulated signals.

We note here two particular choices made for our
numerical simulations: (1) the length distributions were
truncated at 5 mm, meaning that if a sampled length was
smaller than 5 mm, it was removed from the sample; (2)
the velocity distributions were truncated to stay in the
range of 0.01–20mm/s. The choice of this range was
motivated to include not only capillaries but also
larger vessels, the upper limit representing the blood
flow velocity in pial arterioles.26

In a further step, drawing an analogy with the bi-
exponential model, two simulated signals representing
two pools, one for a slow pool, FIVIM=Sim b,Lslow, vslowð Þ

(mean values Lslow, vslow), and another one for a fast
pool, FIVIM=Sim b,Lfast, vfastð Þ (mean values Lfast, vfast),
were combined and compared to the experimental sig-
nals. This comparison aimed to identify the mean
values (lengths and velocities) best matching the experi-
mental signals for the two pools in equation (6), where
for fslow and ffast, we used the values found
experimentally

FIVIM=Sim b,Lslow, vslow,Lfast, vfastð Þ

¼ fslowFIVIM=Sim b,Lslow, vslowð Þ þ ffastFIVIM=Sim b,Lfast, vfastð Þ

ð10Þ

As the self-diffusion of water molecules in the intra-
vascular compartment was not taken into account in
the simulations whereas it was included in the IVIM
model, the simulated signals were not compared dir-
ectly to the experimental signals but to

FIVIM=data bð Þ

e�bDb

where Db is the blood diffusion coefficient, set to
1:75� 10�3 mm2/s (Li et al.27).

Statistical analysis

The statistical analysis for the comparison between the
three models was performed using the corrected Akaike
information criterion (AICc) for a small number of
samples28 (NS< 30)

AICc ¼ Nb ln MSEð Þ þ
2k kþ 1ð Þ

Nb � k� 1

with Nb the number of b-values used to fit the signals,
MSE the mean squared error and k the number of

Fournet et al. 2991



parameters in the model, taking into account that the
Gaussian noise hypothesis for the signal residuals counts
as 1 additional parameter according to the AIC theory.
Hence, k¼ 3, 4, and 5 for the mono-exponential,
Kennan and bi-exponential models, respectively.

The reported AICc values have been calculated using
only experimental and fitted signals corresponding to
b-values< 500 s/mm2 (residual IVIM component of the
signal) (hence Nb¼ 20). The Akaike weight,29 wi AICcð Þ,
was then calculated as the probability that model i is
the best model given the data and the set of candidate
models30

wi AICcð Þ ¼
e�

1
2�i AICcð ÞPK

k¼1 e
�1

2�k AICcð Þ

with �i AICcð Þ ¼ AICc½ �i�min AICcð Þ

where K is the number of compared models (here
K¼ 3). A weight> 0.90 indicates that robust inferences
can be made using the associated model.

The AICc calculations were done using MATLAB
while the other statistical analyses were conducted
using the R software.31 First, the statistical significance
of the difference between the AICc of the bi- and mono-
exponential models was assessed using a Wilcoxon
signed rank test. Then, to assess the existence of a
dependence of the diffusion and bi-exponential
models parameters on the diffusion time and/or ROI,
we used the two-way ANOVA test. If the two-way
ANOVA was statistically significant with regards to
�, the Tukey’s Honest Significant Difference (HSD)
test was used, allowing the identification of the diffusion
times for which the parameter means were significantly
different. When one or both assumptions of the two-way
ANOVA were not met, we used a non-parametric ver-
sion of the two-way ANOVA, the Scheirer–Ray–Hare
test. If the p-value of the Scheirer–Ray–Hare test was
statistically significant with regards to �, the Games–
Howell post hoc test was used, allowing the identifica-
tion of the diffusion times for which the parameter
means were significantly different.

To evaluate the goodness of fit of the experimental
data compared to the dictionary of simulated signals,
the error e between them was calculated using the nor-
malized l2-norm formula

" Lslow, vslow,Lfast, vfastð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

b

FIVIM=Sim b,Lslow, vslow,Lfast, vfastð Þ

�
FIVIM=data bð Þ

e�bDb

0
B@

1
CA

2

P
b

FIVIM=data bð Þ

e�bDb

� 
2

vuuuuuuuut

where FIVIM=Sim and FIVIM=data represent the simulated
signals from the dictionary and the experimental signal,
respectively. An " less than 10% was considered an
acceptable match between the experimental data and
a particular combination of simulated signals.

Results

Model comparison

For one diffusion time (�¼ 24ms), examples of
the IVIM signal versus the b-value along fitted signals
for the bi-, mono-exponential and Kennan models for
the two ROIs are given in Figure 1. The error bars
come from averaging over the directions, repetitions
and slices. In the upper right corners, the ROI masks
have been drawn on the DW images (in white).

The Akaike weights for the mono-exponential
(AWM), Kennan (AWK) and bi-exponential (AWB)
models for the two ROIs have been calculated
and are shown in Figure 2. Although no statistical dif-
ference was found (p> 0.05), we observe AWK<AWM

for all ROIs and diffusion times. Given this, for the
rest of the analysis, we only compared the bi- and
mono-exponential models. For 61 out of 66 data
points, AWB>AWM. A Wilcoxon signed rank test
gives a p< 0.0001 when comparing the AICc values,
showing a significant difference between the AICc of
the two models. The black circles draw attention to
the datasets for which AWB is smaller than AWM.
One can notice that they are all observed for �¼ 34ms,
suggesting that the bi-exponential model is a bet-
ter model to describe the IVIM signal than the stand-
ard mono-exponential model at short diffusion times,
but that the two models converge at longer diffusion
times.

Figure 3(a) displays the box-and-whisker plot for the
difference in AICc between the mono- and bi-exponen-
tial models against the diffusion time for the two ROIs.
As shown in Table 1, the two-way ANOVA test
shows that the AICc is not different according to the
ROI location, but is significantly different between dif-
fusion times (p< 0.0001). The Tukey’s HSD test indi-
cates that the differences in AICc are significantly
different between all diffusion times. Specifically, we
see a decrease in the difference in AICc between the
two models when the diffusion time increases.

Dependence of the model parameters
on the diffusion time

Table 1 gathers the means�SD and the results of the
statistical tests for all parameters of the Kurtosis model,
for diffusion, and of the bi-exponential model, for
IVIM. Figure 3(b) to (f) shows the box-and-whisker
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plots for fIVIM, ADC0, K, D*slow, and D*fast against the
diffusion time for the two ROIs.

ADC0 was found significantly different between
�¼ 24 and 34ms. K and fIVIM were not significantly
influenced by the diffusion time in the range used in this
study. We found, however, a significant difference for
these parameters and ADC0 between the two ROIs.
IVIM parameters, ffast and D*slow, were not signifi-
cantly different between the two ROIs while D*fast
was found lower in the thalamus. D*slow significantly
increased with the diffusion time. D*fast was higher for
�¼ 34 than for �¼ 24ms, although not statistically
significant. However, there was a significant decrease
in D*fast between �¼ 14 and �¼ 24ms and fslow was
found higher for �¼ 34ms compared to �¼ 24ms.

The cortical capillary blood volume fraction was cal-
culated as fIVIM,corr*fslow, where fIVIM,corr is the esti-
mated blood volume fraction corrected for T2

differences between tissue and blood. Taking T2 of
the blood 34.4ms (30% arterial blood with T2¼ 68ms
and 70% venous blood with T2¼ 20 ms15,32) and T2 of

the cortex 56.5ms,33 we obtain the corrected fIVIM,corr

values of 15.6%, 16.7%, and 15.9% for �¼ 14, 24, and
34ms, respectively. For �¼ 14 and 24ms, we obtain
fIVIM,corr*fslow¼ 3.5 and 3%, respectively. We note
that these values are in agreement with the cortical
capillary blood volume fraction of 3.1% found in rats
previously.34 For �¼ 34ms, this value was, however,
found to be higher (7.1%).

To study the signal evolution of the two pools sep-
arately, we simulated the IVIM signal for five diffusion
times, �¼ 3, 14, 24, 34, and 60ms for typical values of
the lengths and blood flow velocities for the two pools
considering that they represent capillaries and medium-
size arterioles: vslow¼ 1mm/s,35 Lslow¼ 40 mm,
vfast¼ 5mm/s,26 and Lfast¼ 150mm. In Figure 4, we
show the simulated signals for the two components at
b¼ 50 s/mm2 weighted by the blood volume fractions
fslow¼ 23 % and ffast¼ 77% against the diffusion time.
ffast*FSim/fast is nine times smaller for �¼ 60ms com-
pared to �¼ 3ms whereas fslow*FSim/slow barely
changes.

Figure 1. Examples of IVIM data fitted with the bi-, mono-exponential and Kennan models. Typical IVIM signal, for one animal,

resulting from the subtraction of the diffusion component from the total MRI signal versus b-value for �¼ 24 ms. The black circles

represent the experimental data. The black, blue, and red lines correspond to the three fitting models, the bi-, mono-exponential and

Kennan models, respectively. The ROI masks are given in the upper right corners: (a, b) LC, (c, d) LT. The curves were fit to the data

with b-values ranging from 0 to 500 s/mm2. Error bars represent SD. Scale bar: 5 mm.
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Dependence of the model parameters
on the repetition time

As our bi-exponential model includes a fast flow com-
ponent, we checked for inflow effects. Indeed, with
increasing TR, we observed a major decrease in fIVIM
and an increase in fslow while D*slow and D*fast stay con-
stant (Table 2). As a result, even though the bi-exponen-
tial behavior was present for both repetition times, the
quality of the fits was significantly better for
TR¼ 1000ms. Interestingly, the product fIVIM* fslow
was similar at both TRs (3.3% at TR¼ 1000ms and
3.7% at TR¼ 3000ms) suggesting that the slow flow
component does not present inflow effects, while the
contribution of the fast flow component to the overall
IVIM effects increases when TR gets shorter.

Comparison of the data with numerical simulations

The comparison with numerical simulations was per-
formed for �¼ 24ms. Four parameters were allowed
to change in the dictionary of simulated signals: Lslow,

vslow, Lfast and vfast (mean values). To assess goodness
of fit, " was calculated between simulated and experi-
mental signals.

In Figure 5(a), in red, we show the 10% " isolines for
the slow pool obtained by fixing Lfast and vfast to 50 mm
and 4mm/s, respectively. The area between two isolines
encompasses all acceptable combinations of Lslow and
vslow that match the experimental data for this particu-
lar set of Lfast and vfast. Similarly, we obtain the 10% "
isolines for the fast pool (in blue) by fixing Lslow and
vslow (Lslow¼ 40 mm, vslow¼ 1mm/s). The isolines’
shapes are similar for both pools, with the slow pool
thinner and shifted to the left compared to the fast
pool, clearly demonstrating that the two pools are
well separated with the slow pool associated with a
smaller blood flow velocity than the fast pool. The
vessel length is difficult to determine and Figure 5(a)
shows that nearly all probed vessel lengths can yield an
acceptable match with the data. To better illustrate this,
in Figure 5(b) and (c), we plot the experimental signal
along with simulated signals with the same blood flow
velocity, vfast¼ 3mm/s, but with two different vessel

Figure 2. Akaike weights for the three fitting models and diffusion times. Akaike weights for each model and ROI for 11 datasets: (a)

LC, (b) LT. The black dotted lines separate the data between the diffusion times. The black circles highlight the cases for which

AWB<AWM.
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lengths for the fast pool, Lfast¼ 70 and 150 mm, and
with the same vslow¼ 1mm/s and Lslow¼ 40 mm for
the slow pool. The two different lengths give a match
with a similar quality confirming that the vessel length
cannot be determined in this comparison (e¼ 6.50%
and 6.38%, respectively). A similar example can be
given for two different vessel lengths associated with
the slow pool. This incapability to determine the

vessel lengths suggests that the two pools are closer to
the sinc regime than to the exponential regime.

Discussion

In this manuscript, we propose a bi-exponential model
to fit the IVIM data at short diffusion times. We show
that, for the datasets in this work, this model performs

Figure 3. Box-and-whisker plots of the model parameters against the diffusion time and ROI. Box-and-whisker plots of the dif-

ference in AICc of the mono- and bi-exponential models and the parameters of the Kurtosis and bi-exponential models against the

diffusion time for the two ROIs: (a) AICcmono–AICcbi, (b) fIVIM,(c) ADC0, (d) K, (e) D*slow, and (f) D*fast. Error bars represent SD

(NR¼ 11).
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better than both the mono-exponential and the Kennan
models proposed previously.

We hypothesize that the bi-exponential behavior
seen in the IVIM data reflects the contribution of
flow in two distinct vascular pools: a slow and a fast
flowing pool corresponding to capillaries and medium-
sized vessels, respectively. This hypothesis is supported
by several observed relationships between the model
parameters when varying experimental parameters.
The presence of more than two vascular pools was
also considered. However, a tri-exponential IVIM
model did not fit the current data better than the bi-
exponential model presented here. Therefore, while the
presence of three or more pools is possible, such add-
itional pools would present very low volume fractions.

We varied TR to examine the inflow effect, which
should impact fast flowing blood. We showed that

inflow effects had a negligible impact on the estimated
volume fraction of the slow pool but significantly
impacted the volume fraction of the fast pool. This is
consistent with the fast pool signal coming from faster
moving blood than for the slow pool. As a result, the
global fIVIM fraction (or the fIVIM value of the IVIM
mono-exponential model) could be overestimated
when inflow effects are present (small number of
slices, short TR).

We found a ffast-value that is smaller at the longest
diffusion time for �¼ 34ms compared to �¼ 24ms, in
agreement with a transition to a mono-exponential
behavior at longer diffusion times as indicated by the
AICc analysis. Combined with the fact that fIVIM is
independent of the diffusion time, this observation
also implies that while both pools, slow and fast, are
initially present at b¼ 0 s/mm2, the decay of the IVIM
signal corresponding to the fast pool is much faster as
the diffusion time increases, eventually becoming diffi-
cult or even impossible to estimate. In addition, this
could explain why the slow pool volume fraction we
found in the cortical ROI was higher for the longest
� (34ms) while in agreement with other literature
reports for �¼ 14 and 24ms.34 Indeed, by simulating
the two components of the IVIM signal separately for
five diffusion times, we show in Figure 4 that FSim/fast

decreases more than nine times going from �¼ 3ms to
�¼ 60ms while FSim/slow practically does not change.

D*slow significantly increased with the diffusion time,
suggesting a sinc (equation (3)) or intermediate regime
for the slow pool. Also in agreement with a sinc regime,
D*fast was higher for �¼ 34ms than for �¼ 24ms,
although not statistically significant. Going from
�¼ 14 to �¼ 24ms, we see, however, a significant
decrease in D*fast. This decrease could result from an
additional dephasing effect present only at very short
diffusion times. It is reasonable to consider that flow in
the slow pool has a plug flow profile. However, if the
fast pool corresponds to medium-sized vessels in
between capillaries and pial arterioles (diameters ran-
ging between 10 (Stefanovic et al.36) and 50 mm
(Ma et al.26) and blood flow velocities ranging between
2 (Unekawa et al.35) and 20mm/s (Jensenet al.37)),
blood flow is expected to be laminar. In this case,
an additional phase dispersion,38 DLF, should be

Figure 4. Simulated IVIM signals at b¼ 50 s/mm2 against the

diffusion time for the slow and fast pools. Simulated IVIM signals

for the slow and fast pools at b¼ 50 s/mm2 weighted by the

blood volume fractions fslow¼ 23% and ffast¼ 77% against the

diffusion time for vslow¼ 1 mm/s, Lslow¼ 40mm, vfast¼ 5 mm/s

and Lfast¼ 150mm. The red and blue circles represent the slow

and fast pools, respectively. The filled circles correspond to the

diffusion times acquired in this study, for �¼ 14, 24 and 34 ms,

and the empty circles to two extreme diffusion times, for �¼ 3

and 60 ms.

Table 2. Changes in the IVIM parameters with TR.

TR (ms) fIVIM (%) fslow (%)

D*slow

(10�3 mm2/s)

D*fast

(10�3 mm2/s)

1000 13.41� 0.55 24.39� 10.84 2.01� 0.33 27.28� 1.97

3000 6.36� 1.06 57.94� 10.36 1.96� 0.70 25.76� 3.21

Note: IVIM parameters for two different repetition times on an ROI on the LC and one slice (NR¼ 4).
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considered to the overall IVIM signal decay of the fast
flow component

FIVIM ¼ e�bDb fslowe
�bD�

slow þ ffaste
�b D�

fast
þDLFð Þ

� 


with DLF ¼
1
6 �u2, where u2 is the variance in the lam-

inar flow velocity field. This contribution is significant
only for observation times on the order of the fluid
element correlation time, defined as

�c ¼
dffiffiffiffiffi
u2

p ,

where d is the blood vessel diameter. A simple estima-
tion, assuming d¼ 40 mm and a mean blood flow vel-
ocity v¼ 5mm/s, leads to �c � 13:33 ms, implying
that DLF cannot be neglected when �¼ 14ms. At
�¼ 24ms, on the other hand, DLF is negligible and,
as a result, we witness a decrease in the measured D�fast.

By matching the experimental data with numerically
simulated signals, we noticed that the vessel length could
not be estimated accurately. Indeed, determining the
vessel length is an ill-posed problem if we consider that,
on average, spins do not get to probe the entire vessel
segment during the diffusion encoding time. This obser-
vation supports our experimental results suggesting that
the two pools are in a sinc or intermediate regime for the
diffusion times used in this study, in agreement with
recent findings showing that the pseudo-diffusion (expo-
nential) IVIM regime is not always valid in the brain.39

ADC0 was found to be significantly influenced by
the diffusion time between �¼ 24 and 34ms. This
trend is coherent with previous results from
Pyatigorskaya et al.,40 although no significant differ-
ence was found between all diffusion times.

We report a significant difference in ADC0, K and
fIVIM with the two ROIs studied, justified by the differ-
ent composition and organization of the two structures.
No significant difference was found for ffast and D*slow
for the two ROIs, probably due to vascular similarities
between the two regions.

The cut-off b-value to separate between diffusion and
IVIM components used in this study, b¼ 500 s/mm2,
is higher than the one usually applied for the rat
brain, 300–400 s/mm2 (Iima et al.41). Due to the high
SNR (ffi 44 at b¼ 500 s/mm2) made possible by the high
field used and the many averages employed, we noticed
that the IVIM signal was still present at b¼ 400 s/mm2

and therefore increased the cut-off value.
It is worth noting that formerly Neil et al. reported

that the IVIM signal obtained by using a modified DW
sequence inwhich the tissue component was directly sup-
pressed can be better fit to a bi-exponential than amono-
exponential function.42 The authors attributed this bi-
exponential behavior to an incomplete saturation of
the extravascular spins. In the analysis we performed,

Figure 5. Contour plots of the 10% errors isolines for different

vessel lengths and blood flow velocities and examples of IVIM

signals superimposed with simulated signals. (a) 10% " isolines for

different combinations of vessel lengths and blood flow velocities.

The red curves correspond to the slow pool for vfast¼ 4 mm/s,

Lfast¼ 50mm and the blue curves to the fast pool for

vslow¼ 1 mm/s, Lslow¼ 40mm. (b, c) Examples of IVIM signal

superimposed with simulated signals versus b-value for

�¼ 24 ms in the LC. The black circles stand for the experimental

data and the blue solid lines for the simulated signals with the

same vslow¼ 1 mm/s and Lslow¼ 40 mm but with two different

combinations of vfast and Lfast, vfast¼ 3 mm/s, Lfast¼ 70 mm,

e¼ 6.50% and vfast¼ 3 mm/s, Lfast¼ 150 mm, e¼ 6.38%, respect-

ively. Error bars represent SD from the averaging step.
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extra care was taken to ensure that the tissue diffusion
component has been completely removed, leaving the
vascular component as the only possible contributor to
the observed bi-exponential IVIM signal.

In this study, given the relatively coarse spatial reso-
lution and the large size of the ROIs considered, we
assumed diffusion and perfusion isotropy. We acquired
and averaged data along three different diffusion
encoding directions in order to eliminate possible gra-
dient hardware differences and to increase the SNR.
However, an investigation of IVIM anisotropy would
be interesting and could provide key insights into the
local geometry of the vasculature.

Our simulations could be improved in several ways.
First, the vessel diameter could be added as a structural
parameter of the network, allowing the definition of a
vessel velocity profile. Second, the Gaussian distribu-
tion for the blood flow velocity could be replaced by a
more accurate representation of the blood flow velocity
in the vascular network, which could be different for
the two pools. Finally, with the hypothesis that both
pools are close to the sinc regime (few number of dir-
ection changes during the measured diffusion time,
hence long segments), the assumption of a uniform dis-
tribution for the vessel orientations in the voxel (with a
fixed vascular volume fraction) may not be valid for all
combinations of vessel lengths and blood flow veloci-
ties. More complex simulations could lead to a more
accurate prediction of the IVIM signal over a large
range of diffusion times.

Conclusion

This study demonstrates that a bi-exponential IVIM
model describes the IVIMMRI signal at short diffusion
times better than the standard mono-exponential IVIM
model. As validated by numerical simulations, this bi-
exponential behavior reflects the presence of two sep-
arate vascular pools, corresponding to two different
flow regimes. While at long diffusion times the faster
pool is difficult to detect, and the bi- and mono-expo-
nential models converge, employing IVIM at short dif-
fusion times can provide valuable information not only
regarding the capillary network but also larger vessels.
There are clinical implications to this finding, as lesions
or response to therapy might potentially be character-
ized by a differential balance between the fast and slow
vascular pools.
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